Predictive model for epoxide hydrolase-generated stereochemistry in the biosynthesis of nine-membered enediyne antitumor antibiotics.

نویسندگان

  • Geoffrey P Horsman
  • Anna Lechner
  • Yasuo Ohnishi
  • Bradley S Moore
  • Ben Shen
چکیده

Nine-membered enediyne antitumor antibiotics C-1027, neocarzinostatin (NCS), and kedarcidin (KED) possess enediyne cores to which activity-modulating peripheral moieties are attached via (R)- or (S)-vicinal diols. We have previously shown that this stereochemical difference arises from hydrolysis of epoxide precursors by epoxide hydrolases (EHs) with different regioselectivities. The inverting EHs, such as SgcF, hydrolyze an (S)-epoxide substrate to yield an (R)-diol in C-1027 biosynthesis, whereas the retaining EHs, such as NcsF2 and KedF, hydrolyze an (S)-epoxide substrate to yield an (S)-diol in NCS and KED biosynthesis. We now report the characterization of a series of EH mutants and provide a predictive model for EH regioselectivity in the biosynthesis of the nine-membered enediyne antitumor antibiotics. A W236Y mutation in SgcF increased the retaining activity toward (S)-styrene oxide by 3-fold, and a W236Y/Q237M double mutation in SgcF, mimicking NcsF2 and KedF, resulted in a 20-fold increase in the retaining activity. To test the predictive utility of these mutations, two putative enediyne biosynthesis-associated EHs were identified by genome mining and confirmed as inverting enzymes, SpoF from Salinospora tropica CNB-440 and SgrF (SGR_625) from Streptomyces griseus IFO 13350. Finally, phylogenetic analysis of EHs revealed a familial classification according to inverting versus retaining activity. Taken together, these results provide a predictive model for vicinal diol stereochemistry in enediyne biosynthesis and set the stage for further elucidating the origins of EH regioselectivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal Structure of Thioesterase SgcE10 Supporting Common Polyene Intermediates in 9- and 10-Membered Enediyne Core Biosynthesis

Enediynes are potent natural product anticancer antibiotics, and are classified as 9- or 10-membered according to the size of their enediyne core carbon skeleton. Both 9- and 10-membered enediyne cores are biosynthesized by the enediyne polyketide synthase (PKSE), thioesterase (TE), and PKSE-associated enzymes. Although the divergence between 9- and 10-membered enediyne core biosynthesis remain...

متن کامل

A phosphopantetheinylating polyketide synthase producing a linear polyene to initiate enediyne antitumor antibiotic biosynthesis.

The enediynes, unified by their unique molecular architecture and mode of action, represent some of the most potent anticancer drugs ever discovered. The biosynthesis of the enediyne core has been predicted to be initiated by a polyketide synthase (PKS) that is distinct from all known PKSs. Characterization of the enediyne PKS involved in C-1027 (SgcE) and neocarzinostatin (NcsE) biosynthesis h...

متن کامل

Regiospecific O-methylation of naphthoic acids catalyzed by NcsB1, an O-methyltransferase involved in the biosynthesis of the enediyne antitumor antibiotic neocarzinostatin.

Neocarzinostatin, a clinical anticancer drug, is the archetypal member of the chromoprotein family of enediyne antitumor antibiotics that are composed of a nonprotein chromophore and an apoprotein. The neocarzinostatin chromophore consists of a nine-membered enediyne core, a deoxyaminosugar, and a naphthoic acid moiety. We have previously cloned and sequenced the neocarzinostatin biosynthetic g...

متن کامل

Polyketide synthase chemistry does not direct biosynthetic divergence between 9- and 10-membered enediynes.

Enediynes are potent antitumor antibiotics that are classified as 9- or 10-membered according to the size of the enediyne core structure. However, almost nothing is known about enediyne core biosynthesis, and the determinants of 9- versus 10-membered enediyne core biosynthetic divergence remain elusive. Previous work identified enediyne-specific polyketide synthases (PKSEs) that can be phylogen...

متن کامل

The biosynthetic genes encoding for the production of the dynemicin enediyne core in Micromonospora chersina ATCC53710.

Dynemicin is a novel anthraquinone-fused member of the 10-membered enediyne antitumor antibiotic family. The development of a genetic system for the dynemicin producer Micromonospora chersina confirmed, for the first time, the requirement of the putative enediyne core biosynthetic genes (dynE8, U14 and U15) and a tailoring oxidase gene (orf23) for dynemicin production. Cloning and sequence anal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 52 31  شماره 

صفحات  -

تاریخ انتشار 2013